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V A R I A T I O N A L  P R O B L E M S  W I T H  A S M A L L  P A R A M E T E R  

I N  T H E  T H E O R Y  O F  E L A S T I C I T Y  

Yu. A. Bogan UDC 539.393 

This study is a continuation of [1]. The latter examined a variant of the Signorini problem and boundary- 

value problems of the theory of elasticity for a cylinder with a corrugated lateral surface undergoing rapid oscillation. Here, 

we examine a variant of  the Signorini problem in which a restriction is imposed on the lateral surface of a cylindrical region 

and the stresses are equal to zero on the planes x 3 = const. This variant is of interest due to its noncoercive nature. To a 

certain extent, the results presented here reinforce the findings in [2]. In the study of a body with a rapidly vibrating lateral 

surface, it is assumed that the boundary conditions are chosen so as to have the body be a cylinder compressed in a rigid 

ring. It is shown that rapid oscillation of the boundary leads to a situation whereby the limiting problem in the boundary 

conditions turns out to be the factor F - the ratio of the length of the undisturbed part of the boundary to the length of the 

disturbed portion. The boundary conditions on the lateral surface should be fairly specific, unlike the case (for example) of 

zero displacement of this surface. 

1. Let us recall the formulation of the problem from [I]. We will examine an elastic, transversely isotropic cylinder 

Q = o~ • ( - h / 2 ,  h/2), where o~ is a finite region on a plane with a fairly smooth boundary 3'. Let E be the elastic modulus 

in the plane of isotropy of the material x 3 -- const, and let E'  be the elastic modulus in the orthogonal plane. We take the 

square root of the ratio E/E'  as the small parameter. In a physically realistic situation, e would be small for an elastic 

cylinder reinforced in the direction of the vertical axis by a set of boron or carbon fibers having an elastic modulus signifi- 

cantly higher in the axial direction than in the circumferential direction. 

We divide the stresses by the elastic modulus E, keeping the previous notation for the dimensionless stresses, and we 

use Hooke's law to express the stresses through the strains: 

crll = ariel1 + at2e22 + a13e33, crl2 = 2(1 + v ) - l e t 2  , 

ix22 = at2e n + ane22 + a13e33,  o ' t3 ----. 2be-2e~3, 

cr33 = a ~ ( e u  + %2) + a33e-2e33 , ~ = 2be-2e23 �9 

Here 

% = (1 - /~2~2)(1 + v ) - ~ a ~ ;  % = (v  +/~2e2) (1 + v) -1 ag~; 

at3--/aaol;  a33 = (1 - v)a f f l ;  a o = 1 - v - 74t2t2; 

e~ = 2-~(u,~ + uj,,)(i,j = 1,2,3,u,.j = Ou,/ax) 

(summation is performed from 1 to 3 over repeating indices); b = E ' /G '  is the ratio of the elastic modulus E'  to the shear 

modulus G'  in the direction orthogonal to the plane of isotropy; v is the Poisson's ratio in the plane of  isotropy; # is the 

auxiliary Poisson's ratio; u k (k = 1, 2, 3) are the displacements. It follows from the positiveness o f  the potential strain 

energy that0  < v < 1, a > 0, b > 0. 

We studied a mixed problem for the system of equations of the theory of elasticity in [1] 
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-~ .~  + f~ = 0,/'~ E L 2 ( Q ) , I =  1,2,3, 

~aL, 3 = + h / 2  =- O, ui[ 'x(_n,2,n:2~ = 0 

where it was shown that the solution converges slowly in H 1 to the problem of the tension-compression and bending of an 

isotropic plate. In order to subsequently account for the dependence of the solution on the parameter t ,  we will denote the 

stresses and displacements by the superscript ~. Here, aij ~ and ui ~ will represent the stresses and displacements in the limiting 

problem. We put 

- - |  �9 
a'(u ' ,v)  = 2 fa , , (u  )e,,(c,)dx. 

Q 

2. We will examine a variant of  the Signorini problem with a certain restriction on the lateral surface of the cylinder. 

Let a closed convex cone K 1 exist in W = [HI(Q)]3: 

K 1 =  { u ~  W ; u  ~< 0on  S = y  • ( - h / 2 ,  h / 2 ) } .  

We will study the asymptotic behavior of the variational inequality 

a ' ( u ' , o  - u ' )  >I ( / , o  -- u ' )  V o E K 1. (2.1) 

as e --, +0.  The quadratic form affu e, u ~) is noncoercive on K 1. In order for the minimum of the functional 

J ( u ' )  = a ' ( u ' , u ' )  - F (u ' ) ,  F (u ' )  = f f k u : d x  
{? 

to exist on K I in accordance with theorem 10.1 in [3], the following condition must be satisfied 

F ( p )  ~< 0 V p  ~- R ' ,  R" = R 1"1 K~ (2.2) 

(R is the space of rigid-body displacements). If condition (2.2) is satisfied exactly, i.e. if the sign of the inequality remains 

unchanged when and only when p E R* (where R* is a subset of R'  formed by the bilateral displacements, i.e. displacements 

such that p and - p  are compatible with the constraints on the body), then J(u e) has an absolute minimum on K 1. We will 
henceforth require the use of theorem 1.4 from [4]. 

T h e o r e m .  Let II u I1' be a half-norm on a Hilbert space H, 

g = {u ~ H; lluU' = O, dim R < o0}. 

We assume that 

c t  II u U ~ II u U' + II PRu II ~< c~ II u II 

(PR is an operator allowing orthogonal projection on R). Let K be a closed convex subset and let ~ be a penalty operator. 

We assume that the differential of  ,~ is positively uniform, i.e. that D : ( t u ,  h) = tD,.~(u, h) for any t > 0. Let f E H, K 

A R ~ {0} u - -  (f, h) > 0 when h E K FI R, h g 0. Then the following inequality is valid 

~u~ '2 + .~ (u)  - (.t',u) >~ c t II u N - c r  

Let us consider passing to the limit at t --, + 0  in inequality (2.1). As in Part 2 in [1], we relate (2.1) to a problem 
with a penalty: 

+  -'Sv"2 r = 
s e (2.3) 
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Its solution is determined to within the field of rigid-body displacements: 

Pl = 0 + ]~X 2 - -  f l X 3 , , O  2 = b - ) ' x  1 + o ~ x 3 , / 0  3 = c + f i x  I - ctx 2. 

We then have the following estimate for problem (2.3) 

a=(u=~,u "~) ~ Cllu'~'ll~ - c2. 

In fact, if we put 

~ ( u )  = 2 - ' f ( I u  ~'" 1+)2dS, (1, u) = f f~uf lx ,  
s f2 

~ 1 / 2  
Ilull -- ( fe~(u)e (u)dx) , 

then the above theorem makes it possible to obtain the required estimate, since estimates (1.6) from [1] remain valid in this 

case. Thus, we can isolate from the sequence u e,n another sequence that converges slowly in W to the element u ~ (the same 

notation as was used previously is used here for the new sequence). Due to the compactness of the traces in L2(S), the term 

with the penalty converges to the expression 

~- ' f t e , , , ,  + ~ , ,~r  (,~,,,, + ,~,,~),~, + ,~ ,,.; ~,, ~ s .  
) ), 

Here, ds is an element of arc length. The conditions of solvability of the initial problem (2.1) are transformed in this case: on 

S we have the inequality 

p~nk[ s ~ O, 

it following from this that a = /3 = 0 in the formulas for the rigid-body displacements (due to the arbitrariness with respect 

to x3). Then 

Pt = a + ~xz, p2 = b -  yxl, p3 = c. 

Having integrated over x 3 in the solvability condition 

f ( f , P ,  + f,  P2 + f3P3) dx <~ O, 
Q 

we find that the following is necessary for the limiting problem to be solvable 

f [Vl)(a  dr •x2) d t. V2)( b _ rx1) .3r cV3) ] a g  ~ O, 
t~ 

so that 

f tO=,>(a + yx~) + O*~>(b - y x , ) ] d x '  ~ O, 
6* 

f V~dx' = o, dx' = d x l d x  2. 

The passage to the limit at r/---- + 0 is based on well-established methods [5]. Here, the initial variational inequality is split in 

two: the first expression has the form 

d(g,g - g') >~ ((f),g - V,.,) V 7; E K2, (2.4) 
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where K 2 is a closed convex cone in [Hi(w)] 2 generated by the condition gn ] 3' _< 0, corresponding to a two-dimensional 

Signorini problem (the condition necessary for its solution is satisfied). The second inequality 

b(.o;o, ,,~ _ .oo)3 * ( 0 %  ,,3 - .~,o) v ,,, e K~. (2.5) 

Here, K 3 is a closed convex cone in H2(~) generated by the condition 0v3/0n [ 3' --< 0; b(u, v), d(u, v) are bilinear symmetric 

forms consisting of  the factors with h and h 3 in Eq. (1.9) from [1]. In (2.4)-(2.5), (f) is the mean of f over the thickness of 

the cylinder. 

Let us now formulate the final result. 

Theorem 2.1. At e --- +0,  the functions Ul e, u2 ~ are the solution of variational equation (2.1), converging slowly to 

the solution of variational inequality (2.4), while u3 ~ converges slowly to the solution of inequality (2.5). 

The problem of solving inequality (2.5) was examined in [2], where it was proven to be solvable with the stronger 

assumptions 

f ( f3 )xJx '  = 0, k = 1,2, f (f3)dx' = 0 
u, to 

(co is a bounded convex set with a regular boundary). The decrease in the number of solvability conditions is connected with 

the fact that the functions u3 ~ are determined to within a constant. It follows from theorem 2.1 that the convexity of the 

region is also not a necessary condition. 

3. Let us examine one more variant of boundary conditions on the lateral surface of the cylinder. Let on S 

a , =  O , a  + k u ,  = O , k >  O. (3.1) 

The mechanical interpretation of boundary conditions (3.1) [5] is as follows: the shear stress vanishes, while the 

normal forces are forces of  elastic inertia and are proportional to the absolute value of the normal displacement. Let V 1 be a 

Hilbert space: 

v~ = {v e w;  a~l,  = o ,  o , I ,  = 0}, 

V = vln t + v2n v o = - v l n  I + o2n r 

We put 

a;(u,v) = a'(u',v) + k f u : ~ d S .  
S 

The variational problem consists of determining the function u e E W, which satisfies the integral identity 

a;(u' ,v )  = ( / , v )  v o e v 1. 

Analogously to theorem (4.2), we can prove from [2] that there exists a constant o~ > 0 such that 

a~(u',u') ~ a II u' II ~ .  

Thus, the given problem has a uniqe solution, and estimates (1.6) from [1] are valid for it. Passing to the limit at e ---- 0 in 
the term 

$ 

after we integrate over x 3 we obtain the expression 

khf g . ~ d s  + 12 ~ On an " 
Y y 

(3.2) 
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We put 

/ t l l  = e l t ( g  ) + v e 2 2 ( g ) , n . ~  " = v t~ l l (g  ) + ~:22(g),tt12 = 2(1 - v)c12(g ), 

M, = (1 - ,) ax,ax---~2n, + {--o--~2 + ~" 21n2'ax, ) 

= - ( l - , ,  - t + , , ,  ) 

M = - M l n  2 + M2n Y 

Since %0 E Hol(co), we can write the Green formula for %0 in the form 

803 
= ( < > - 

It follows from (3.2) that gl, g2 solve the following problem: determine gl, g2 G Hi(co) from the integral identity 

d(u,Ve) + khfg,.~d;, = ( < L > ,%) V ~, ~ ~ ,  
y 

= {u e [n~(~o) l ~, ~ = -v~, 2 + ~5"~1, = 0}. 

(3.3) 

Here, U30 is the solution of the problem 

3 0 
h r 8/23 8U 3 

/,(u~,~,~) + ~S2J ~ ~ a ~ ,  = ( < 4 > ,~'~) 
y 

v ,~ e U'o(,O) n u~(o~), M - k0, ,~ = o. 

(3.4) 

The solutions of problems (3.2) and (3.3) are unique. 
Theorem 3.1. At e ---, +0,  ul e and u2 e converge slowly in W to the solution of problem (3.3), while u3C converges 

slowly to the solution of problem (3.4). 

4. Let us examine a problem similar to that studied in Part 3, assuming that the lateral surface of  the region is 

corrugated. A similar problem with a rapidly oscillating boundary was examined in [2] for the Laplace equation. It should be 

noted that boundary-value problems of the theory of elasticity for a transversely isotropic body with a corn~gated lateral 

surface were studied in [6] by the method of regular boundary perturbation - in contrast to the method used in the present 

investigation. 

Let Qc = c% • ( - h / 2 ,  h/2), with o; o being a bounded region on a plane having a smooth boundary aw o and an outer 

unit normal N. We use s to designate the curvilinear abscissa with the curve ar In the neighborhood of  &%, s and N are 

curvilinear coordinates on a plane. We will examine the smooth periodic function Y2 = F(Yl) with the period 1 in the 

rectangular coordinates Yt, )'2. We define the boundary a% of region % by the equation N = e x F(x/e) (where e is a small 

positive parameter). We assume that the small parameter, characterizing the oscillation of  the boundary, coincides with the 

small parameter that characterizes the anisotropy of the body. This assumption is not essential and is made only to simplify 

the notation. 

We will consider the situation in which there are no singular perturbations in the system of equations of the theory of 

elasticity (e = 1 in the generalized Hooke's law). As in Part 3, we put 

V 1 = {U ~ W;  r = O, s = O, S e = 0r X ( -h /2 ,h /2)} .  

The vector-function u e is determined from the integral identity 

a'(u',o) + , f u : ~ a s  = (/, , ,)  v ~, e v 1. 

$1 

As in [2], we define the "waviness factor" F as the ratio of the length a% to the length aw o. 

(4.1) 
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Theorem 4.1. The solution of problem (4.1) converges slowly in [HI(Q0)] 3 to the solution of the problem 

a(u~ + krfu~ = (i,o) v ,, ~ v , ,  
SO 

S O = Oco o X ( - h / 2 , h / 2 ) .  

The proof of this theorem is analogous to the proof of theorem 8.1 in [2] and is omitted here. 
Now let us examine the situation in which a singular perturbation exists in the system of equations. In this case, the 

term 

in Eq. (4.1) reduces to the following in accordance with lemma 8.1 from [2] 

h3 fau~ ~3 
~hr f g.~, ayo + kr -~ --~7 ~aTo 

y 

and the limiting problems for determining u3 ~ gi, and g2 have the form (3.2)-(3.3), where the multiplier I" should be placed 
in front of the integral of % 

Theorem 4,2. When the system of equations contains a singular perturbation in the limit at e --- +0, the solution of 
problem (4. I) splits into the solutions of the problems: 

d(g,W) + khr fg ,  W,dr = (g) ,  ~,) v w ~ ~ ,  
r 

= {o ~ [H'(co) f,  v, = -otn, + uanl[ ' = 0}; 

h ~ Ou~ ov~ 
b(.~ + k~r  f ~ ~ d r  = (Or,>, o,) 

7 

v < ~ sr n sr M - ~r  ou~lO. I ,  = o. 

(4.2) 

(4.3) 

We should make several comments here regarding the behavior of the results obtained above. It follows from Eqs. 
(4.2) and (4.3) that the boundary conditions of the initial problem are transformed in the passage to the limit. The boundary 
conditions of the limiting problem contain the multiplier I', which is connected with the fact that the boundary conditions of 
the initial problem correspond to a cylinder compressed in a rigid ring. The boundary is straightened during deformation, 
which in turn leads to a change in the boundary conditions. Such a change in boundary conditions would not be possible if, 
for example, we assigned the displacements on the lateral surface. 
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